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INTRODUCTION

IN THE classical theory of elasticity, the potential energy density is a function of the strain
whereas in the nonlocal theories the energy is a function of the strain and gradients of the
strain, or parts thereof such as the rotation gradient which leads to couple stresses. For
the classical theory, Galerkin [1] exhibited a complete solution of the displacement equation
of equilibrium in terms of a single vector function satisfying an equation of higher order
but of simpler and more tractable form. In the present paper, after a review of the solutions
for the classical and rotation gradient cases, the analogous solutions are exhibited for the
non-local equations of higher and' higher orders up to Cauchy’s [2] equation of infinite
order for his asymptotic theory of an elastic medium with long range interactions between
molecules in a periodic structure.

CLASSICAL THEORY

The displacement equation of equilibrium in the classical, linear theory of elasticity,
for the isotropic case, is

kVV.-u—VxVxu+f = 0. (D

In (1) u is the displacement, k = (A+ 2u)/u where A is Lamé’s constant and p is the shear
modulus, f is the ratio of the body force density to u and V, V., Vx are the gradient, diver-
gence and curl operators, respectively.

Galerkin’s solution of (1) may be obtained as follows. In a region ¥, let x, y, z be the
coordinates of a field point, P, and &, 1, { be the coordinates of a source point Q. Let

r=02+y"+ )20 = (P + ) = (=P + -+ =0

Suppose u is any (sufficiently smooth) vector function and define a vector function H
and a scalar function ¢ by

47H = — f ritug dvg, drep = f ri'r - VZH, dV,.
1 4 1 4
Then

VZH=u, V?p=-—r-VH, )

where V2 is Laplace’s operator.
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Now, define the Galerkin function by
G =H+3k—1)V(r-H+o). 3)
Then
VV.G = VV-H+3k—1)V(r- V2GH+2V-H+V?0p)
so that, from the second of (2),
VV.G =kVV-H. 4)
Also, from (3),
VXVxG =VxVxH=VV.H-V*H
This becomes, from (4) and the first of (2),
VXVXG =k 'VV.G—u
Thus, any sufficiently smooth vector function u may be represented by
u=k"'VV.G-Vx VXG. 5

Suppose, now, that u is a solution of (1). To find the resulting equation governing G,
first note that, from (5),

VV.u = k™'V?VV.G,
VxVxu= —VxVxV¥xVxG =VxVxVG = VVV.G-V*G,
where V* = V?V2 Then upon substituting (5) in (1), we find
V4G = —f. (6)
Accordingly, Galerkin’s complete solution of (1) is given by (5), provided the Galerkin
function G satisfies (6).
ROTATION GRADIENT

The theory of elasticity in which the potential energy density is a function of the strain
and the rotation gradient was given by Aero and Kuvshinskii 3], Grioli [4], Rajagopal [5]
and Truesdell and Toupin [6]. The displacement equation of equilibrium for the centrosym-
metric, isotropic case is

kVV.-u—(1-BV)V xVxu+f =0, 7

where [, is a material constant.
To find the Galerkin function for (7), first define H and ¢, in this case, by

47H = — f rii(l—e "y dV,, 4 = f ri'r - (1-13VH)ViH, dV,.
v 14
Then [7, equation (10.12)],
(1—13V3)V?*H = u, Ve = —r-(1-BVH)V’H. (8)

Now, define the Galerkin function, in this case, by
G = (1-BVHH+ Yk —DV[r- (1 -PV)H+ ),
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where
= B/1-k).
Then, using the second of (8), we find
VV-G = kVV-H.
Also, taking into account (9) and the first of (8), we find
u=k '(1-BV)VV.G-VxVxG.

To find the equation governing G, substitute (10) in (7). The result is

(1-BV)VG = —1.
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(10)

(11)

The solution (10) and (11) was given by Mindlin and Tiersten [7, equations (11.24) and

(11.25)]. An alternative proof of completeness was given by Doyle [8].

FIRST STRAIN GRADIENT

The theory of elasticity in which the potential energy density is a function of the strain
and the first gradient of the strain was given by Toupin [9]. The displacement equation of

equilibrium for the centrosymmetric, isotropic case is [10, equation (13.1)]
k(1=PVHVV .u—(1-BVH)Vx Vxu+f =0

where I, and [, are constants. Define H and ¢, now, as

4nH = — f P UL+ e 12 eIy (0 — B)ug d Vg,
|4

4mp =f i - (1 PV2)V3H, dV,
| 4

where
? = (kI3 - B)/(k—1).
Then [11, equation (67)]

1-BV)(1-BV)VH=u, V¢ = —r-(1—PV)V?H.

Next, define the Galerkin function for this case by
G = (1-BVHH+3k— )V[r- (1 —*V)H + ¢].
Then, employing (13) and the second of (14), we find
VV.-G = k(1-12V*)VV.H.
Also,

VxVxG = (1-BV)Vx VxH = (1-12V?)(VV - H—V?H).

From (15) and (16), and employing the first of (14), we find
u=k'(1-B)VV.-G-(1-1BVH)HVx VxG.

(12)

(13)

(14)
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Finally, upon substituting this representation in the equation of equilibrium (12), we find
the equation governing the Galerkin function for the strain gradient theory:

(1-BVH(1-BVHVG = —1.

SECOND AND HIGHER GRADIENTS OF STRAIN

When the potential energy density is a function of the strain and the first and second
gradients of the strain, the displacement equation of equilibrium for the centrosymmetric
isotropic case is [11, equation (25)]

k(1—13 V)1 —B,VHVV cu—(1 = 13,VH)(1 —2,VI)V x Vxu+f = 0, (17)
where [;; are constants. The pattern of representation having been established in the preced-

ing sections, it may be inferred that any solution of (17) can be expressed in terms of a
Galerkin function, G, according to

u = k(1—12,V3)(1 —2,V)VV .G —(1 - 2,V¥)(1 ~ 2,V})V x V x G. (18)

Upon substituting (18) into (17) we find the following equation to be satisfied by the Galerkin
stress function for the second strain gradient theory:

(1-8,V)H(1 -1, V)1 - B, V(1 = B,V)V*G = —f.

Similarly, if the potential energy density is a function of the strain and all gradients of
strain up to and including the ath, it may be inferred that the equation of equilibrium, for
the centrosymmetric, isotropic case, would be

k[(1-013,VH(1=1},V3)...(1-1,V)]VV.u
—[(1=5,VH(1-5,V)...(1-B,V)VxVxu+f=0 (19)
and the complete representation of the displacement in terms of the Galerkin function
would be
u=k [1-5,VH(1-13,V>)...(1-12,VHVV -G
—[(A-B,VH(1 =1,V ... (1-E, V)V VG,

where G satisfies the equation

[(1=85,V)(1 =13,V ... (1= B,V (1 =11, V(1= 1},V?) ... (1 - B, VI)]V4G = —f.

The equation of equilibrium (19) may be written in the form

(E\V>+E,V*+ - - E, ., \V¥"* Yy (F,+F,V?+ ... F.V>*")VV.u+f = 0,

whereE,,E,...and F,, F, ... areconstants. This equation is to be compared with Cauchy’s
asymptotic equation for an elastic medium with long range interactions between molecules
in a periodic structure. In the case of equilibrium of a centrosymmetric, isotropic material,
Cauchy’s equation is [2]

Eu+FVV.u+f =0,

where E and F are entire functions of V2. Upon expanding E and F in series of powers of V2,
we see that the nth gradient theory comprises the first n terms of Cauchy’s theory.
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Finally, it may be observed that the Galerkin functions for the gradient theories of
various orders are all governed by equations of the form

(1 —a,V?)(1 —a,V?)...(1—a,V)VG = —f.

Since the differential operator, of order 2n+4, is a product of the double Laplacian and n
second order linear operators, the Galerkin function may be resolved into the sum of a
particular integral, a biharmonic function, a harmonic function and n functions satisfying
homogeneous second order equations:

G=G,+G"+G'+ Z G,
i=1
where

VG =0, VG =0, (1-aV)G;=0, i=12...n

and G, is the particular integral.
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